Wednesday, January 28, 2009
Forget Nuclear
Comment: Another great article against Nuclear Power, cannot post whole article, too long, please look at whole article, nice Graphs
By Amory B. Lovins, Imran Sheikh, and Alex Markevich
Nuclear power, we’re told, is a vibrant industry that’s dramatically reviving because it’s proven, necessary, competitive, reliable, safe, secure, widely used, increasingly popular, and carbon-free—a perfect replacement for carbon-spewing coal power. New nuclear plants thus sound vital for climate protection, energy security, and powering a growing economy.
There’s a catch, though: the private capitalmarket isn’t investing in new nuclear plants, and without financing, capitalist utilities aren’t buying. The few purchases, nearly all in Asia, are all made by central planners with a draw on the public purse. In the United States, even government subsidies approaching or exceeding new nuclear power’s total cost have failed to entice Wall Street.
This non-technical summary article compares the cost, climate protection potential, reliability, financial risk, market success, deployment speed, and energy contribution of new nuclear power with those of its low- or no-carbon competitors. It explains why soaring taxpayer subsidies aren’t attracting investors. Capitalists instead favor climate-protecting competitors with less cost, construction time, and financial risk. The nuclear industry claims it has no serious rivals, let alone those competitors—which, however, already outproduce nuclear power worldwide and are growing enormously faster.
Most remarkably, comparing all options’ ability to protect the earth’s climate and enhance energy security reveals why nuclear power could never deliver these promised benefits even if it could find free-market buyers—while its carbon-free rivals, which won $71 billion of private investment in 2007 alone, do offer highly effective climate and security solutions, sooner, with greater confidence.
Uncompetitive Costs
The Economist observed in 2001 that “Nuclear power, once claimed to be too cheap to meter, is now too costly to matter”—cheap to run but very expensive to build. Since then, it’s become several-fold costlier to build, and in a few years, as old fuel contracts expire, it is expected to become several-fold costlier to run. Its total cost now markedly exceeds that of other common power plants (coal, gas, big wind farms), let alone the even cheaper competitors described below.
Construction costs worldwide have risen far faster for nuclear than non-nuclear plants, due not just to sharply higher steel, copper, nickel, and cement prices but also to an atrophied global infrastructure for making, building, managing, and operating reactors. The industry’s flagship Finnish project, led by France’s top builder, after 28 months’ construction had gone at least 24 months behind schedule and $2 billion over budget.
Wind, cogeneration, and end-use efficiency already provide electrical services more cheaply than central thermal power plants, whether nuclear- or fossil-fuelled. This cost gap will only widen, since central thermal power plants are largely mature while their competitors continue to improve rapidly. The high costs of conventional fossil-fuelled plants would go even higher if their large carbon emissions had to be captured.
Nuclear power, being the costliest option, delivers less electrical service per dollar than its rivals, so, not surprisingly, it’s also a climate protection loser, surpassing in carbon emissions displaced per dollar only centralized, non-cogenerating combined-cycle power plants burning natural gas8. Firmed windpower and cogeneration are 1.5 times more costeffective than nuclear at displacing CO2. So is efficiency at even an almost unheard-of seven cents per kilowatthour. Efficiency at normally observed costs beats nuclear by a wide margin— for example, by about ten-fold for efficiency costing one cent per kilowatthour.
New nuclear power is so costly that shifting a dollar of spending from nuclear to efficiency protects the climate several-fold more than shifting a dollar of spending from coal to nuclear. Indeed, under plausible assumptions, spending a dollar on new nuclear power instead of on efficient use of electricity has a worse climate effect than spending that dollar on new coal power!
If we’re serious about addressing climate change, we must invest resources wisely to expand
and accelerate climate protection. Because nuclear power is costly and slow to build, buying more of it rather than of its cheaper, swifter rivals will instead reduce and retard climate protection.
All sources of electricity sometimes fail, differing only in why, how often, how much, for how long, and how predictably. Even the most reliable giant power plants are intermittent: they fail unexpectedly in billion-watt chunks, often for long periods. Of all 132 U.S. nuclear plants built (52 percent of the 253 originally ordered), 21 percent were permanently and prematurely closed due to reliability or cost problems, while another 27 percent have completely failed for a year or more at least once.
Nuclear plants have an additional disadvantage: for safety, they must instantly shut down in a power failure, but for nuclear-physics reasons, they can’t then be quickly restarted. During the August 2003 Northeast blackout, nine perfectly operating U.S. nuclear units had to shut down.
Twelve days of painfully slow restart later, their average capacity loss had exceeded 50 percent. For the first three days, just when they were most needed, their output was below 3 percent of normal. The big transmission lines that highly concentrated nuclear plants require are also vulnerable to lightning, ice storms, rifle bullets, and other interruptions. The bigger our power plants and power lines get, the more frequent and widespread regional blackouts will become. Because 98–99 percent of power failures start in the grid, it’s more reliable to bypass the grid by shifting to efficiently used, diverse, dispersed resources sited at or near the customer. Also, a portfolio of many smaller units is unlikely to fail all at once: its diversity makes it especially reliable even if its individual units are not.
The sun doesn’t always shine on a given solar panel, nor does the wind always spin a given turbine. Yet if properly firmed, both windpower, whose global potential is 35 times world electricity use, and solar energy, as much of which falls on the earth’s surface every ~70 minutes as humankind uses each year, can deliver reliable power without significant cost for backup or storage. These variable renewable resources become collectively reliable when diversified in type and location and when integrated with three types of resources: steady renewables (geothermal, small hydro, biomass, etc.), existing fuelled plants, and customer demand response.
Such integration uses weather forecasting to predict the output of variable renewable resources, just as utilities now forecast demand patterns and hydropower output. In general, keeping power supplies reliable despite large wind and solar fractions will require less backup or storage capacity than utilities have already bought to manage big thermal stations’ intermittence. The myth of renewable energy’s unreliability has been debunked both by theory and by practical experience. For example, three north German states in 2007 got upwards of 30% of their electricity from windpower-39% in Schleswig-Holstein, whose goal is 100% by 2020
Please review rest of article at: http://www.rmi.org/sitepages/pid467.php
By Amory B. Lovins, Imran Sheikh, and Alex Markevich
Nuclear power, we’re told, is a vibrant industry that’s dramatically reviving because it’s proven, necessary, competitive, reliable, safe, secure, widely used, increasingly popular, and carbon-free—a perfect replacement for carbon-spewing coal power. New nuclear plants thus sound vital for climate protection, energy security, and powering a growing economy.
There’s a catch, though: the private capitalmarket isn’t investing in new nuclear plants, and without financing, capitalist utilities aren’t buying. The few purchases, nearly all in Asia, are all made by central planners with a draw on the public purse. In the United States, even government subsidies approaching or exceeding new nuclear power’s total cost have failed to entice Wall Street.
This non-technical summary article compares the cost, climate protection potential, reliability, financial risk, market success, deployment speed, and energy contribution of new nuclear power with those of its low- or no-carbon competitors. It explains why soaring taxpayer subsidies aren’t attracting investors. Capitalists instead favor climate-protecting competitors with less cost, construction time, and financial risk. The nuclear industry claims it has no serious rivals, let alone those competitors—which, however, already outproduce nuclear power worldwide and are growing enormously faster.
Most remarkably, comparing all options’ ability to protect the earth’s climate and enhance energy security reveals why nuclear power could never deliver these promised benefits even if it could find free-market buyers—while its carbon-free rivals, which won $71 billion of private investment in 2007 alone, do offer highly effective climate and security solutions, sooner, with greater confidence.
Uncompetitive Costs
The Economist observed in 2001 that “Nuclear power, once claimed to be too cheap to meter, is now too costly to matter”—cheap to run but very expensive to build. Since then, it’s become several-fold costlier to build, and in a few years, as old fuel contracts expire, it is expected to become several-fold costlier to run. Its total cost now markedly exceeds that of other common power plants (coal, gas, big wind farms), let alone the even cheaper competitors described below.
Construction costs worldwide have risen far faster for nuclear than non-nuclear plants, due not just to sharply higher steel, copper, nickel, and cement prices but also to an atrophied global infrastructure for making, building, managing, and operating reactors. The industry’s flagship Finnish project, led by France’s top builder, after 28 months’ construction had gone at least 24 months behind schedule and $2 billion over budget.
Wind, cogeneration, and end-use efficiency already provide electrical services more cheaply than central thermal power plants, whether nuclear- or fossil-fuelled. This cost gap will only widen, since central thermal power plants are largely mature while their competitors continue to improve rapidly. The high costs of conventional fossil-fuelled plants would go even higher if their large carbon emissions had to be captured.
Nuclear power, being the costliest option, delivers less electrical service per dollar than its rivals, so, not surprisingly, it’s also a climate protection loser, surpassing in carbon emissions displaced per dollar only centralized, non-cogenerating combined-cycle power plants burning natural gas8. Firmed windpower and cogeneration are 1.5 times more costeffective than nuclear at displacing CO2. So is efficiency at even an almost unheard-of seven cents per kilowatthour. Efficiency at normally observed costs beats nuclear by a wide margin— for example, by about ten-fold for efficiency costing one cent per kilowatthour.
New nuclear power is so costly that shifting a dollar of spending from nuclear to efficiency protects the climate several-fold more than shifting a dollar of spending from coal to nuclear. Indeed, under plausible assumptions, spending a dollar on new nuclear power instead of on efficient use of electricity has a worse climate effect than spending that dollar on new coal power!
If we’re serious about addressing climate change, we must invest resources wisely to expand
and accelerate climate protection. Because nuclear power is costly and slow to build, buying more of it rather than of its cheaper, swifter rivals will instead reduce and retard climate protection.
All sources of electricity sometimes fail, differing only in why, how often, how much, for how long, and how predictably. Even the most reliable giant power plants are intermittent: they fail unexpectedly in billion-watt chunks, often for long periods. Of all 132 U.S. nuclear plants built (52 percent of the 253 originally ordered), 21 percent were permanently and prematurely closed due to reliability or cost problems, while another 27 percent have completely failed for a year or more at least once.
Nuclear plants have an additional disadvantage: for safety, they must instantly shut down in a power failure, but for nuclear-physics reasons, they can’t then be quickly restarted. During the August 2003 Northeast blackout, nine perfectly operating U.S. nuclear units had to shut down.
Twelve days of painfully slow restart later, their average capacity loss had exceeded 50 percent. For the first three days, just when they were most needed, their output was below 3 percent of normal. The big transmission lines that highly concentrated nuclear plants require are also vulnerable to lightning, ice storms, rifle bullets, and other interruptions. The bigger our power plants and power lines get, the more frequent and widespread regional blackouts will become. Because 98–99 percent of power failures start in the grid, it’s more reliable to bypass the grid by shifting to efficiently used, diverse, dispersed resources sited at or near the customer. Also, a portfolio of many smaller units is unlikely to fail all at once: its diversity makes it especially reliable even if its individual units are not.
The sun doesn’t always shine on a given solar panel, nor does the wind always spin a given turbine. Yet if properly firmed, both windpower, whose global potential is 35 times world electricity use, and solar energy, as much of which falls on the earth’s surface every ~70 minutes as humankind uses each year, can deliver reliable power without significant cost for backup or storage. These variable renewable resources become collectively reliable when diversified in type and location and when integrated with three types of resources: steady renewables (geothermal, small hydro, biomass, etc.), existing fuelled plants, and customer demand response.
Such integration uses weather forecasting to predict the output of variable renewable resources, just as utilities now forecast demand patterns and hydropower output. In general, keeping power supplies reliable despite large wind and solar fractions will require less backup or storage capacity than utilities have already bought to manage big thermal stations’ intermittence. The myth of renewable energy’s unreliability has been debunked both by theory and by practical experience. For example, three north German states in 2007 got upwards of 30% of their electricity from windpower-39% in Schleswig-Holstein, whose goal is 100% by 2020
Please review rest of article at: http://www.rmi.org/sitepages/pid467.php
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment