Tuesday, September 1, 2009

A Different Perspective on the U.S.-India Nuclear Deal

Comment: This is a great article and please click the link below to read entire piece. Why is the USA pushing the nuke cycle? Uranium mining and nuke plants are dangerous and have the history of future and past to ruin our land, our air, our health, and our water! Write letters of all our leaders plus leaders of other countries to stop the buildup of the nuke cycle!

Peter Custers

The U.S.-India nuclear deal was initiated through a framework agreement signed by India’s Prime Minister Manmohan Singh and U.S. President Bush in July 2005. India, at the instigation of Washington, agreed to separate its civilian and military nuclear production facilities, and place all civilian production facilities under the inspection regime of the International Atomic Energy Agency (IAEA), in return for U.S. economic, technological, and military cooperation.

The nuclear deal, which took three years to complete, is officially aimed at promoting India’s access to uranium and to civilian nuclear technology, through enlarged importation of both.

Whereas nuclear energy contributed a reported 2.5 percent of India’s energy requirements in 2007, the deal is expected to boost the contribution of the nuclear sector to India’s electricity supply, without reducing India’s primary dependence on coal.

From its very start, the U.S.-India nuclear deal has generated huge controversies, both in India and internationally. The intent here is to lay bare the implications of the deal for the creation of waste, while putting aside, for the moment, other important controversies associated with the nuclear agreement.

The Nuclear Deal: Importation of Nuclear Technology and Importation of U.S. Armament Systems

As a starting point, I will take two newspaper articles published in the Times of India on September 11, 2008. One of these highlighted the business prospects of the U.S.-India nuclear deal in terms of the sale of nuclear production technology and the importation and the construction of nuclear reactors in India. The second article discussed the aspiration of the United States in terms of expanded exports of armament systems to India.

The article on the expansion of nuclear energy production spoke glowingly about the size of business that will be generated, mentioning a figure of $40 billion worth of orders that Indian and foreign enterprises stand to receive, and hailing the deal as a “project” of great financial significance. Under the deal, a reported twenty-four light-water reactors will be imported from abroad and installed along India’s coasts. India plans to build twelve more indigenous nuclear plants, consisting of pressurized heavy-water reactors. At no point in the article are the implications of the nuclear deal in terms of generation of additional nuclear waste discussed.4

Generation of Hazardous Waste in Nuclear Production

I do not possess comprehensive data on the nuclear waste that has been generated by nuclear production thus far in India. Nor am I in a position to give a precise assessment regarding the waste that importation and construction of new reactors will create.

However, the experience of nuclear production worldwide is unequivocal: nuclear waste emerges at each and every link in the nuclear production chain, starting from the very first stage, i.e., that of uranium mining and milling, and continuing through to the last stage, where nuclear fuel elements are treated in reprocessing facilities.

An important source for my own understanding of these issues is the book Nuclear Wastelands, written by a group of scientists led by the U.S.-based Indian academician Arjun Makhijani, which primarily reviews waste generation by nuclear-military production facilities.6

From this and other sources, I have selected three cases of waste generation, namely: the waste tailings that emerge when uranium is mined and milled; depreciated fuel elements that themselves are a form of nuclear waste; and the high-level waste that needs to be put aside when former nuclear fuel elements are reprocessed.

Uranium mining is, of course, the first stage in the nuclear production chain. Such mining is also undertaken in India, and would likely be intensified in consequence of the U.S.-India nuclear deal.

When uranium ore is mined, uranium is prepared and enriched for use as raw material in making nuclear fuel elements. As a result, a huge amount of hazardous material in the form of mill tailings is left behind—tailings that contain radioactive substances and are therefore hazardous for humans and for nature.

Speaking in volume terms, these tailings reportedly constitute 95 percent of all the nuclear waste generated in the nuclear production chain. Among the radioactive substances found in mill tailings are, for instance, radium-226 and thorium-230, the latter of which has a half-life of 76,000 years—meaning that it will take that many years before half of its radioactivity decays.

In mining uranium and in creating the tailings, capitalist entrepreneurs are not just burdening our children and grandchildren with the consequences of uranium extraction, but entire future generations, for an indefinite period of time.

The damaging consequences of uranium mining have been well recorded in the United States, where, historically, nuclear production started. Here, tailing dams have turned into slurry after downpours of rain. Between 1955 and 1977, a total of fifteen tailing dams have broken. In one case, the Rio Puerco was flooded with ninety-four million gallons of tailing liquids, resulting in contamination of a long stretch of the river.7

Dangerous waste is also produced during the next stage, when nuclear energy is generated in reactors. Surely, the production of nuclear energy can be seen as a contribution to human welfare, if looked at purely from the perspective of energy generation.

Yet, the hazardous implications from employment of nuclear fuel rods in the reactors are multifarious. A section of the rods needs to be taken out regularly, as the nuclear fuel elements can be utilized for only three years.

Now, in the parlance of economic theory, the fuel elements, once taken out, are considered “depreciated means of production.” They are presumed to have lost all the value that has been transferred to the new commodity, the nuclear energy. Yet the fuel elements undoubtedly are a form of hazardous waste.

Speaking in quantitative terms, the size of this waste seems small, however the radioactivity contained in the spent fuel elements is truly intense. The radioactive elements present in this nuclear waste include uranium, strontium-90, caesium-137, and plutonium. Of these, plutonium is entirely the outcome of human production; as such, it does not exist in nature. It is known to be the most toxic substance on earth, its half-life being exceedingly long. The half-life of plutonium-239, for instance, is 24,000 years; that of plutonium-242, as much as 380,000 years. Even microgram quantities of plutonium, when inhaled by humans, are known to result in fatal cancers.8 Hence, the worldwide expansion in construction and utilization of nuclear reactors is a reason for grave concern. Each additional nuclear reactor generates spent nuclear fuel rods containing different forms of high-level waste.

The third distinct stage in the chain of nuclear production is that of reprocessing. For decades, policymakers in the West have tried to make the public believe that they had solved the issue of spent fuel elements. They argued that these fuel rods can be treated chemically in reprocessing facilities, so as to allow for reuse of the uranium to create fresh plutonium for “productive” ends, in manufacturing new fuel elements.

Yet it is here that problems really pile up. At this stage, high-level waste comes into being as a distinct category of waste, since the chemical treatment of the fuel rods not only helps to separate uranium and plutonium, but also results in high-level waste that needs to be put aside. This stage produces uranium-236, as distinguished from uranium-235, incorporated in the fuel elements. Uranium-236 has a half-life of 24.2 million years. There is also the radioactive element jodium-129, which has a half-life of 15.7 million years. These are time scales we, as humans, are hardly able to imagine, but that make the consequences of nuclear production that much graver. The high-level liquid waste after chemical treatment of fuel rods is commonly stored in tanks.

The risks involved in such storage can be exemplified through the accidents that have taken place in nuclear-military production facilities, both in the United States and the former Soviet Union.

The Hanford nuclear complex is where the United States used to manufacture its military plutonium. Here, high-level waste in liquid form was stored in 117 stainless steel tanks, each containing 500,000 gallons of waste. In 1973, a leak was discovered that had caused massive dissipation of radioactivity into Hanford’s subsoil.9

But the most dramatic accident involving high-level radioactive waste stored in tanks was reported from the former Soviet Union. In 1957, in the military-nuclear Cheliabinsk complex, located in the Ural Mountains, a tank explosion occurred. The U.S.S.R. suppressed the news of the accident in the name of guarding “state secrets,” but Soviet scientists unraveled the accident long before the Gorbachev government instigated an inquiry. Just as in Hanford, the high-level waste from reprocessing in Cheliabinsk was stored in stainless steel tanks, located in a canyon-shaped area eight meters under the soil’s surface. The explosion in Cheliabinsk’s tanks resulted in a massive leakage of radioactivity. A reported 22 million curies of radioactivity were released, 2 million curies in the form of a plume that reached a height of one kilometer above the Cheliabinsk complex. The explosion and releases of radioactivity destroyed entire ecosystems in the surrounding region. Villages had to be evacuated, rivers and lakes were polluted, and the government was forced to take draconian measures to contain the danger.10

Above, I have summarized data on selected aspects of nuclear waste generation and storage, focusing on waste tailings from uranium mining and milling, on the waste represented by spent nuclear fuel elements, and on the high-level waste that is put aside whenever nuclear fuel rods are reprocessed. Surely, given the risks they represent for humans and for nature, there is no way one can belittle the occurrence of multiple wastes in the nuclear production chain. Nor can one deny the validity of posing the consequences of the U.S.-India nuclear deal in these terms.

Notes:

1.See, e.g., Praful Bidwai, “Manmohan’s False Nuclear Move,” July 19, 2008, www.cndp.org; also Zia Mian and M. V. Ramana, “Going MAD: Ten Years of the Bomb in South Asia,’’ July 29, 2008, www.cndp.org. Go back
2.A precursor of the concept of non-commodity waste is the term “discommodities” coined by the marginalist Jevons, but largely ignored by other economists of his time and subsequently. See W. Stanley Jevons, The Theory of Political Economy (London: Macmillan and Co., 1879) 62. Go back
3.For a full discussion, see Peter Custers, Questioning Globalized Militarism: Nuclear and Military Production and Critical Economic Theory (New Delhi: Tulika Publishers, 2007). Go back
4.Srinivas Laxman, “N-Trade: It’s a $40 Billion Opportunity,” Times of India, September 11, 2008, 15. For other estimates regarding the business prospects of the deal, see J. Sri Raman, “How India’s ‘Waiver’ Has Won,” September 9, 2008, www.cndp.org. Go back
5.Rajat Pandit, “In Defence, U.S. Wants to be India’s Partner No.1,” Times of India, September 11, 2008, 13. Go back
6.Arjun Makhijani, Howard Hu and Katherine Yih, eds., Nuclear Wastelands (Cambridge: MIT Press, 1995). Go back
7.Katherine Yih, Albert Donnay, Annalee Yassi, A. James Ruttenber, and Scott Saleska, “Uranium Mining and Milling for Military Purposes,” in Makhijani et al., Nuclear Wastelands, 121. Go back
8.For details on the health and environmental hazards of plutonium production and use, see Frank Barnaby, “Nuclear Legacy,” Cornerhouse Briefing Paper No. 2 (Dorset: The Corner House, November 1997). Go back
9.On the leakages of nuclear waste at the Hanford complex, see, e.g., Makhijani and Scott Saleska, “The Production of Nuclear Weapons and Environmental Hazards,” in Makhijani et al., Nuclear Wastelands, 44. Go back
10.On the Cheliabinsk catastrophe, see, e.g., Zhores Medvedev, Nuclear Disaster in the Urals (London: Vintage Books, 1980); also Makhijani et al., Nuclear Wastelands, 335. Go back


TO READ ENTIRE REPORT, CLICK BELOW:
http://www.monthlyreview.org/090901custers.php

No comments: